lunes, 4 de noviembre de 2013

Evaluación de la vulnerabilidad sísmica de puentes extradosados durante su construcción por voladizos sucesivos

El trabajo presenta el estudio de la vulnerabilidad sísmica de los puentes extradosados durante construcción por voladizos sucesivos. Para esto fueron desarrollados modelos de elementos finitos de un puente extradosado de tres luces (60 + 100 + 60 m), a partir de los cuales se determinó la respuesta sísmica durante seis etapas constructivas, y dos en estado de servicio, antes y después de que ocurran los efectos de fluencia y contracción del concreto. Siguiendo el enfoque propuesto en Wilson y Holmes (2007), se comparó la respuesta sísmica durante construcción y en servicio para determinar los elementos estructurales con mayor vulnerabilidad sísmica, además de detectar las etapas constructivas críticas. Los resultados encontrados permiten concluir que la vulnerabilidad sísmica del puente extradosado durante construcción es mayor que la del estado de servicio, ya que durante construcción se tienen probabilidades de excedencias anuales mucho mayores al 0.21% que se adopta para el diseño sísmico del puente. Además, se encontró que los cables extradosados y las torres son los elementos con mayor vulnerabilidad, y que las etapas previas al cierre del puente son las más críticas.
Introducción
Generalmente, la construcción de los puentes extradosados se hace empleando el método de los voladizos sucesivos. Este método deja a los puentes en un alto grado de vulnerabilidad frente a diversas acciones como el viento, la caída de segmentos y/o del carro de avance, o el volcamiento de uno de los voladizos, acciones que son consideradas y revisadas durante la fase de diseño del puente. En cambio, a los eventos sísmicos que puedan ocurrir durante la construcción no se les da mucha importancia y el diseño sísmico del puente se hace, generalmente, para la estructura completa. Este hecho se argumenta en la baja probabilidad de excedencia del sismo de diseño durante el periodo de construcción. Por ejemplo, usando la filosofía de diseño del Código Colombiano de Diseño Sísmico de Puentes (AIS, 1995), en donde se propone un sismo de diseño con probabilidad de excedencia (P) del 10%, en un lapso (t) de 50 años, lo que equivale a un evento con probabilidad de excedencia anual (p) del 0.21%, se tendría, para ese mismo evento pero en un periodo de construcción supuesto en 1.5 años, una probabilidad de excedencia de 0.32%, determinado a partir de la Ecuación 1.
Si en lugar de usar el tiempo total de construcción se empleara la duración máxima de cada una de las etapas constructivas, como es sugerido en Calvi, Sullivan y Villani (2010), la probabilidad sería aún mucho menor.
(1)
Sin embargo, podría darse el caso de que ocurran eventos sísmicos durante construcción que tengan menor magnitud que el sismo de diseño pero que, debido a la baja redundancia del sistema estructural y al gran porcentaje de masa, puedan generar fuerzas considerables en los elementos estructurales. Este hecho fue estudiado por Wilson y Holmes (2007), quienes a partir de la respuesta sísmica en la base de los pilares de un puente atirantado, pudieron determinar que las fuerzas obtenidas en el puente completo, para el sismo de diseño con p= 0.21%, son igualadas durante construcción por sismos de menor magnitud pero con probabilidades de excedencia anual mucho mayores que llegan hasta el 20%, exponiendo el alto grado de vulnerabilidad sísmica de esa tipología.
Usando el mismo enfoque presentado por Wilson y Holmes, en el presente estudio se evalúa la vulnerabilidad sísmica de los puentes extradosados durante construcción, tipología que comparte similitudes morfológicas con los puentes atirantados, pero cuyo diseño y comportamiento difiere en cuanto a la mayor rigidez que tiene el tablero. Para este propósito se analiza la respuesta sísmica de un puente extradosado de luz central 100 metros, modelado numéricamente mediante elementos finitos, en el cual se ha incluido a la altura de los pilares como una de las variables. El trabajo describe las características del estudio y presenta los resultados no solo para los pilares, si no que se analizan otros elementos principales como el tablero, las torres y los cables, de modo tal que se obtenga una idea mucho más global de la vulnerabilidad del puente. Por último, se presentan las principales conclusiones del estudio.
2. Características del estudio
2.1 Descripción del puente
Las características geométricas principales se definieron a partir de los criterios de diseño presentados en Benjumea, et al. (2010) y las tendencias actuales en puentes extradosados presentadas en Benjumea, et al. (Benjumea, et al. 2012). El puente tiene una luz central de 100 m y dos vanos laterales de 60 m. Las torres son elementos macizos de dimensión 2.5 x 1.5 m, con altura igual a 10 m, ver Figura 1. El tablero tiene una altura constante de 2.5 m (esbeltez igual a L/40) y consiste en una sección tipo cajón unicelular con voladizos, con espesor de losa inferior variable, ver Figura 2 y Tabla 1. El primer cable extradosado se ancla sobre el tablero a una distancia de 21.5 m respecto del eje de la torre y los cinco cables restantes se ubican cada 5.5 m, haciendo coincidir los extremos de las dovelas con los nodos de anclaje de los cables. Estos elementos están conformados por 12 tendones de Ø0.6" presolicitados a una tensión promedio de 0.42fpu. Los pilares consisten en una sección rectangular hueca, cuya sección se presenta en la Figura 3.
Su altura (Hp) fue modificada, siendo estudiadas longitudes de 25, 37.5 y 50 m. Se ha supuesto que el puente se apoya sobre rodillos en sus extremos, aunque se restringieron los movimientos en la dirección transversal. Los pilares se suponen empotrados en la cimentación y unidos rígidamente al tablero en la corona.
Las propiedades del acero de los cables extradosados son: fpu de 1860 MPa, Eps de 1.999x105 MPa, y Υps igual a 77.14 kN/m3. La verificación por fatiga en estado límite de servicio y del esfuerzo admisible en estado límite último se ha hecho de acuerdo a lo establecido en SETRA (2001). Para el análisis estructural no fue considerada la relajación de estos elementos. En cuanto al concreto del tablero, la torre, y los pilares, se ha empleado un hormigón de f'c igual a 39.2 MPa, Ec igual a 2.55x104 MPa, y Υc igual a 23.5 kN/m3. En el análisis durante construcción se tuvieron en cuenta los efectos por fluencia y contracción del concreto, siguiendo las provisiones del CEB-FIB Model Code 1990 (CEB-FIP, 1993). Los efectos del envejecimiento en la resistencia y el módulo de elasticidad del concreto no fueron incluidos en el análisis.

Figura 1. Vista longitudinal del puente estudiado


Figura 2. Sección típica del tablero (izquierda) y sección en apoyo sobre pilares (derecha)